Spectral Fidelity Analysis of Compressed Sensing Reconstruction Hyperspectral Remote Sensing Image Based on Wavelet Transformation
نویسندگان
چکیده
For hyperspectral image research, spectral characteristic retainment is more important than the spatial details retainment, so it is necessary to evaluate the spectral influence of hyperspectral image compressed sensing. In this paper, the researchers select a hyperspectral remote sensing image PROBE CHRIS with abundant coastal wetland ground objects to analyze spectral fidelity of wavelet transform compressed sensing algorithm on the basis of three indicators between reconstruction and original image pixel spectra: correlation coefficient, error and relative error. Meanwhile, eight typical ground objects are chosen to analyze their respective spectral deviation. The results indicate: (1) Image reconstruction algorithm based on wavelet transform compressed sensing functions well. Between the pixels of reconstruction image and original one, their average spectral correlation coefficient is 0.9428, error is 6.4096, and relative error is 13.81%; (2) Spectrum fidelity indicator values vary with wavebands. Reconstruction algorithm is selective about objects.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملWeighted Total Variation Iterative Reconstruction for Hyperspectral Pushbroom Compressive Imaging
Compressed sensing is suitable for remote hyperspectral imaging, as it can simplify the architecture of the onboard sensors. To reconstruct hyperspectral image from pushbroom compressive imaging, we present iterative prediction reconstruction architecture based on total variation in this paper. As the conventional total variation prior is not effective at capturing the correlation within spatia...
متن کاملAdaptive Grouping Distributed Compressive Sensing Reconstruction of Plant Hyperspectral Data
With the development of hyperspectral technology, to establish an effective spectral data compressive reconstruction method that can improve data storage, transmission, and maintaining spectral information is critical for quantitative remote sensing research and application in vegetation. The spectral adaptive grouping distributed compressive sensing (AGDCS) algorithm is proposed, which enables...
متن کاملStudy on the Super-resolution Reconstruction Algorithm for Remote Sensing Image Based on Compressed Sensing
Image super resolution reconstruction has important significance in remote sensing image feature extraction and classification etc.. Because the remote sensing image size is larger, it is difficult to super resolution reconstruction using multiple images, the compressed sensing (CS) theory was introduced into the super-resolution reconstruction. Algorithm designed the low pass filter to reduce ...
متن کاملSub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran
Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...
متن کامل